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Motivation

With the advent of healthcare 

technology, IoT, and big data 

applications, the need for memory 

with the following characteristics 

increased:

● Ultra-dense

● Ultra-low-power

● Robustness to environmental 

variations (reliability)



IoT -> Fully flexible 
electronic system

● Processing units - CPU

● The main memory - RAM

● Storage - NVM
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Requirements
In order to replace traditional mechanical hard disks with solid-state storage devices, a 

fully flexible electronic system will need two basic devices:

● Transistors: Used for logic operations and gating memory arrays

● Nonvolatile memory: Required for storing information in the main memory and 

cache storage.



Overview: Mainstream Design Approaches 
All-organic systems

Both devices and 

substrates are made up of 

organic materials.

Hybrid systems

Inorganic electronic 

devices are transferred 

onto an organic substrate

SOI substrate

Use silicon-on-insulator 

(SOI) substrates, and 

controlled spalling 

technology to peel-off thin 

semiconductor layers.



Overview:  
Emerging NVM

● Resistive RAM (ReRAM)

● Flash memory (floating gate and 

charge trapping)

● Phase change RAM (PCRAM)

● Ferroelectric RAM (FeRAM)

Benefits of fast switching, 

low-operation voltage, and 

ultra-large-scale-integration (ULSI) 

densities.



Reference: [5]



Materials used for designing NVM
0-dimensional

● Gold nanoparticles 

(NPs)

● Black phosphorus 

quantum dots (QDs)

● Silicon QDs

1-dimensional

● ZnO nanowires

● Si nanowires

● Carbon nanotubes 

(CNTs)

2-dimensional

● Graphene

● Graphene oxide

● MoS2

● ZnO

● Hydrated tungsten 

trioxide (WO

3

.H

2

O) 

nano-sheet

Reference: [5]



Semiconductor Industry: 
Artificial Skin, Display

Sony

Samsung
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Approaches for Making Flexible Devices



All-Organic Approach
● Polymeric semiconductors as channel materials.

● Polymeric ferroelectrics for nonvolatile storage.

● Thick, durable insulating polymers to support the flexible substrate.

All-organic deposited NVM

Reference: [1]



All-Organic Approach

Inkjet-printed organic inverter on a plastic substrate
Reference: [2]



All-Organic Approach
Challenges

Performance:

● The highest reported mobility more 

than 20 times lower than silicon 

(exception of 43 cm

2

/V.s peak hole 

saturation mobility reported by 

Yongbo Yuan et al. [3]).

● Reliability 

● Thermal stability [4]

Advantages

● Low cost

● Flexibility - AMOLED display



Hybrid Systems Approach
Use both organic and inorganic materials.

● More versatile.

Generic transfer technique, where 
devices are fabricated on a specific 
rigid substrate and then transferred 
to one that is flexible

Reference: [6]



Hybrid Systems Approach

Three modes of transfer printing

Reference: [7]



Hybrid Systems Approach

Fabricating flexible crossbar-structured memory on a plastic substrate via 
the laser lift-off transfer methodReference: [8]



Hybrid Systems Approach
Challenges

● Extra non-conventional transfer steps.

● Low yield

Advantages

● High performance



Spalling Technology
Use stressor layers to initiate fracture-modes in SOI and semiconductor substrates.

● Deposit a Ni stressor layer that is abruptly discontinued near one edge of the 

wafer where a crack in the mono-crystalline silicon (Si) is to be initiated by 

applying a force [9, 10].

● Before the force is applied, polyimide tape is added to support the flexible peeled 

layer bearing ultra-thin body devices.

Reference: [11]



Spalling Technology
Challenges

● Extra deposition and complex tuning of a stressor material with a specific thickness 

followed by etching are required

● Once the crack has been initiated, the peeling-off process requires high dexterity that 

is not suitable for mass production



Complementary Transfer-free Inorganic Approach
Inverse proportionality between the material’s thickness and flexibility.

● High performance

● Reliability

● ULSI density

● Low cost

Flexibility ∝ t - 3



Complementary Transfer-free Inorganic Approach

Reference: [12]

Silicon-flexing technique (Device first approach)



Complementary Transfer-free Inorganic Approach

Reference: [13]

Soft-etch back approach



Fracture Strength
Most common method: three-point bending test.

● Based on the application’s required bending radius, the thickness of the flexible 

silicon substrate must be adjusted such that the applied stress is lower than the 

fracture stress.

● Eg. : the minimum bending radius that would cause fracture stress for a 50-μm 

thick flexible silicon substrate is ~ 3 mm



NVM Operational Principles and Architectures



NVM Operational Principles
● Capable of storing information over long periods of time (~10 years is the 

industry standard)

● Retain information even when no power is supplied.



Leading Flexible NVM technologies
Resistive RAM: ReRAM (Memristor)

● A resistive oxide is sandwiched between two metallic layers. 

● The resistance of the oxide changes with applied “set” and “reset” voltage pulses.

Reference: [14, 15]



Leading Flexible NVM technologies
Ferroelectric RAM: FeRAM

● A ferroelectric material has two possible polarization states inherent from its 

crystalline structure.

● Applying write/erase voltage pulse switches for positive to negative polarization 

states.

Reference: [16]



Leading Flexible NVM technologies
Phase change RAM: PCRAM

● Current or laser pulses are applied to change the phase of a material from 

crystalline (low resistance) to amorphous (high resistance) and vice versa at a 

localized space, which changes the material’s electrical and optical properties.

Reference: [17,18]



Leading Flexible NVM technologies
Flash memory (floating gate (FG))

● Similar structure as a field effect transistor (FET), except that its gate dielectric is 

split into three layers. 

○ Tunneling oxide

○ Embedded conductor layer - floating gate

○ Blocking oxide

● When a programming voltage is applied, carriers tunnel from the channel to the 

floating gate.

Reference: [19]



Leading Flexible NVM technologies
Flash memory (charge trapping (CT))

● The charge trap flash replaces the floating gate (a conductor layer) with an 

insulating layer.

Reference: [20]



NVM Architectures: Memory Cell design

Reference: [5]



NVM Architectures: Major arrangements

Reference: [5]



Idea of Numbers: 
Flexible NVM Technologies



Figures of Merit

● Form Factor (F

2

)

● Density

● Cost ($/bit)

● Endurance

● Retention

● Operation voltage

● Speed

● Memory window



Flexible ReRAM
● Report for 10 nm × 10 nm ReRAMs [14].

● S. Jo et al. experimentally demonstrated that CMOS neurons and memristor 

synapses in a crossbar configuration can support synaptic functions [15].

● Interesting work using inorganic flexible substrate (Al foil) with organic cellulose 

nanofiber paper enabled achieving the lowest reported bending radius for 

ReRAM (0.35 mm) and lowest operating voltage (±0.5 V) [21].



Flexible FeRAM
● In general, FeRAMs have superior endurance and low variability, which represent 

critical challenges for state-of-the-art redox memristive memories [22].

● Rigid ferroelectric random access memories (FeRAM) have already made a great 

leap by their introduction to the market; hence, it is a relatively mature 

technology compared to other emerging NVM technologies.

● Commonly used ferroelectric material in FeRAM is lead zirconium titanate 

(Pb

1.1

Zr

0.48

Ti

0.52

O

3

—PZT).

○ high switching speed ~ ps for material switching and 70ns for actual arrays (parasitic capacitances)

○ low cost per bit

○ low operation voltage - 1.5V

○ Read/Write Cycles > 10

15

○ Retention > 10 years at 85 °C

Reference: [5]



Flexible PCRAM
● In general, PCRAMs have high switching transition speed. Eg.: Flexible PCRAM 

on polyimide required a 30 ns pulse to switch.

● Highly localized regions of phase change that enables ultra-high integration 

densities. Hong et al. reported phase-change nano-pillar devices with the potential 

of reaching up to tera bit/squared inch densities on flexible substrates.

● Yoon et al. demonstrated a 176 Gbit/square inch PCRAM, the highest reported 

density on a flexible substrate.

● The highest reported bending cycles endurance (1000 bending cycles) and yield 

(66%) for flexible PCRAM was reported by Mun et al., in 2015.

Reference: [5]



Flexible Flash
● Most mature NVM technology in today’s market.

● Current flexible flash memories have reported operation voltages ranging from ±5 

to ±90 V with minimum channel length dimensions of 2-μm [19]. 

● Nonetheless, good bendability has been achieved up to 5 mm for 2000 bending 

cycles, an endurance of 100,000 cycles, and a retention ability of 10

6 

s.

Reference: [5]



Comparison of the Best
Flexible ReRAM Flexible FeRAM Flexible PCRAM Flexible Flash

Form Factor (F2) 2 1 -- 2

Cell Dimensions (μm) 10 × 20 channel 20 × 20 0.035 diameter 2 channel length

Endurance (cycles) 106 109 100 105

Retention (s) 5 × 106 105 104 106

Operation voltage (V) −0.5 −3 1.8 −5 to +5

Speed (ns) 50 500 30 100

Memory window (V) 4 35 -- 15

Reference: [5]



Future Prospects?



Thank You

Questions?
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