
Graph Placement Optimization on a Heterogeneous
Memory System

Qinzhe Wu
Electrical and Computer Engineering

University of Texas at Austin
Austin, United States
qw2699@utexas.edu

Snehil Verma
Electrical and Computer Engineering

University of Texas at Austin
Austin, United States
snehilv@utexas.edu

Alexander M. Taft
Electrical and Computer Engineering

University of Texas at Austin
Austin, United States
alexmtaft@utexas.edu

Abstract—Graph analytics continue to be an important and
emerging field, and because their execution is data driven,
numerous memory accesses are required. In an effort to ame-
liorate the growing divide between core processing power and
memory bandwidth delivered, heterogeneous memory systems
have begun to enter the stage of contemporary processor design.
Heterogeneous memory can offer significantly higher bandwidth
over conventional DRAM (∼5x on Intel’s Knights Landing archi-
tecture using Multi-Channel Dynamic Random Access Memory
(MCDRAM)). The benefits however can be stymied for graph
processing applications as they are sensitive to memory layout
change and small run-time adjustments can lead to a chain of
updates, which incur additional run-time overhead and energy
consumption.

We propose a novel optimization technique that statically
makes fine-grain placement decisions about which type of mem-
ory each vertex of a graph should reside in. This technique relies
on the intuition that the natural properties of a graph (number
of incoming/outgoing edges, topology, frontier composition) can
be analyzed to make a decision about which vertices would most
benefit from placement in MCDRAM. We modify a light-weight
shared memory graph processing framework (Ligra) to use our
optimization technique, evaluating the technique and showing it
can be easily adopted. After exploring various heuristic strategies,
our placement optimization shows increased performance can
be achieved through partitioning, and at least in one case a 2x
speedup can be obtained.

Index Terms—Graph Analytics, Heterogeneous Memory, Static
Placement Optimization

I. INTRODUCTION

To mitigate the growing disparity between delivered versus
desired memory bandwidth plagued by conventional systems
using DRAM, contemporary processors have begun to include
on-package High-Bandwidth Memory (HBM). HBM can make
up for starved bandwidth in data driven applications by acting
as either a cache for off-chip memory, or as a separate NUMA
node of flat addressable memory.

At the same time as HBM has become more readily
available, graph applications have continued to grow in both
size and popularity. Graph applications are inherently memory
driven (rather than arithmetic) and may benefit from increased
bandwidth of system memory - which contemporary proces-
sors employing HBM possess.

While dynamic partitioning algorithms have been pro-
posed [1], [2], they require online profiling which adds over-

head and complexity, and in some cases additional hardware
to use it. We seek to investigate the natural characteristics of
graphs (topology, incoming/outgoing edges, etc.) to make an
offline and static partitioning of its vertices to achieve higher
performance in a heterogeneous memory system.

The main contributions of this work are summarized as
follows:
• We model the roofline for a heterogeneous memory

system and show that there exists additional exploitable
bandwidth.

• We propose a static graph placement optimization tech-
nique and implement it on top of a state-of-the-art graph
processing framework.

• We explore and develop several different placement
heuristics, of which some demonstrate performance im-
provement.

The rest of this paper is organized as follows: First, we
motivate the study with a sanity check and prior work (§ II).
We then propose a heuristic-based static graph placement
optimization technique and illustrate it with several example
decision-making strategies (§ III). The proposed optimization
is then evaluated by running three common graph applications
on four representative graphs, along with discussion of the
results (§ IV). Finally, we conclude with future prospects and
current limitations (§ V), and wrap-up our observations (§ VI).

II. MOTIVATION AND RELATED WORK

As motivation for an optimization strategy, we first perform
a sanity check to ensure large bandwidth differences on a real
heterogeneous system can be observed. We then motivate our
work from two bodies of research that explore heterogeneous
memory systems for exploiting bandwidth, Dynamic Access
Partitioning (DAP) [1] and ProfDP [2], and then state our
intended users.

A. Sanity Check
To substantiate the need for a placement strategy we first

conduct an empirical study using the Roofline Tool [3] de-
veloped by Berkley CS lab. We run the model at the Texas
Advanced Computing Center (TACC) using Intel’s Knights
Landing (KNL) equipped with on-package MCDRAM and
off-chip DRAM, which is the heterogeneous memory system

1

for our experimental setup. Since each type of memory is
abstracted to a different NUMA node, we completely bind
the roofline tool to each memory using the available numactl
command. Figure 1 exhibits the expected bandwidth differ-
ences between the two types of memory (84.0GB/s for DRAM
and 396.1GB/s for MCDRAM). Hence, there is potential in
exploiting the interplay between the two types of memory.

 10

 100

 1000

 0.01 0.1 1 10 100

G
F

L
O

P
s

 /
 s

e
c

FLOPs / Byte

Empirical Roofline Graph (KNL flat-quadrant)

191.3 GFLOPs/sec (Maximum)

L1
- 1

50
1.

2
G

B/s

L2
- 9

21
.0

 G
B/s

M
CDRAM

 -
39

6.
1

G
B/s

DRAM
 -

84
.0

 G
B/s

Fig. 1: Empirical roofline model for KNL flat-quadrant mode

B. Dynamic Access Partitioning (DAP)
Dynamic Access Partitioning [1] challenges traditional wis-

dom that higher hit rates in a memory side cache result
in improved system performance. The authors state that hit
rate in the memory side cache, beyond a certain point, can
actually degrade system performance. This is said to be
due to the overall delivered bandwidth becoming limited by
that of HBM, which leaves underutilized bandwidth from
DRAM on the table. By sacrificing memory side cache hit
rate, multiple bandwidth sources can be utilized, leading to
a greater aggregate bandwidth than just the HBM side cache
alone. DAP uses an online profiler to identify the data that is
most bandwidth critical, and explicitly sends the remaining to
memory. They mention that their learning mechanism requires
16B of additional hardware.

Using the insight from DAP, we are motivated to research
how multiple bandwidth sources could be utilized in a way
other than just a memory side cache, namely, if offline partition
decisions can be made for a graph to take advantage of
multiple bandwidth sources. Explicitly this means using KNL
in flat-quadrant mode, rather than cache mode.

C. ProfDP
Our second source of motivation is derived from a data

placement guide in heterogeneous memory systems known
as ProfDP [2]. In their work they assume that optimal data
placement is achieved when all data is placed in fast memory
(having the lowest latency or highest bandwidth). However,
due to the challenges associated with placing all data in fast
memory (capacity constraints or allocation capability), this
kind of placement can not always be achieved. Even when
there are no constraints on capacity or allocation capability,
it may be better to have only some part of the data in fast

memory to achieve better performance. ProfDP presents a
light-weight offline profiler which is stated to achieve near-
optimal data placement in a heterogeneous memory system.
They achieve near-optimal performance (optimal being all
data in fast memory) by making data placement decisions
determined by a few concrete and abstract features of a
data object - size, importance, latency sensitivity, bandwidth
sensitivity.

We used the object features they highlight as motivation
into exploring how the inherent qualities of a graph could be
used in data placement decisions of either HBM or DRAM.
We also challenge their statement that placing all data in fast
memory is the optimal case and placement strategy, showing
that data driven workloads (graph analytics in this case) can
benefit from partitioning between heterogeneous memory even
when all of the data can fit into HBM.

Moreover, ProfDP requires manual intervention from the
programmers to explicitly perform the data placement and
needs to run at least twice to compute a sensitivity metric
and make placement decisions. On the other hand, we provide
programmers a tool to relabel the vertices such that program-
mers do not have to make changes in their code. Additionally,
we provide them with knobs to tune parameters corresponding
to the placement strategy. We believe this would make the
programmers’ life easier and increase their productivity, as
code bases are usually large.

D. Users
Our optimization strategy targets on those who run graph

applications on heterogeneous memory systems and want to
exert minimal effort in taking advantage of HBM. A user
does not need to make modifications to their existing code as
our optimization is statically done prior to their application
running and also does not require additional hardware or
online profiling. A user, if they desire, may also tune the
performance of their application with different knobs made
easily available to them (no code changes).

Additionally, other users may be those who can use our
placement strategies as a building block for more advanced
placement techniques, improving upon the ones that we pro-
pose.

III. HEURISTIC-BASED STATIC GRAPH PLACEMENT
OPTIMIZATION

To form placement optimization strategies, we rely on our
intuition that good vertex placement policies can be derived
from the topology of a graph. Once these characteristics are
determined, we can relabel the vertices so that they reside with
a contiguous address space in each type of memory (providing
good spatial locality). By relabeling the vertices we have very
fine-grain control on tuning which vertices reside in which
memory.

To implement the strategy we modify a well known light-
weight shared memory graph processing framework known as
Ligra [4]. Modification to the framework involves analyzing
an adjacency list, relabeling vertices to form a new adjacency
list, and then allocating the vertices in either HBM or DRAM.

2

A. Placement Strategies

We develop several strategies and explain how they work
using an example weighted directed graph shown in Figure 2.
Some strategies take parameters (which can be tuned via
knobs), which guide vertex placement in a slightly different
way, but still follow the same fundamental placement algo-
rithm.

8

1 2 3

94

7 60

5 12

12 23 34 42

46

24

79

67

95

54

41

26

61

13

1

30

0

1 3

2 4 6 9

7 5 8

Iter0:

Iter1:

Iter2:

Iter3:

0

1 3

2 4 6 9

7 5 8

Iter0:

Iter1:

Iter2:

Iter3:

INTERLEAVE(1,2)

INTRALEAVE(1,2)

0

1 3

2 4 6 9

7 5 8

Iter0:

Iter1:

Iter2:

Iter3:

FRONTIER(3)

VID out
degree

children list
(in degree)

0 2 1(3), 3(2)

1 2 2(3), 4(3)

2 1 7(1)

3 3 4(3), 6(2), 9(1)

4 1 5(1)

5 1 4(3)

6 2 1(3), 2(3)

7 1 6(2)

8 3 1(3), 2(3), 3(2)

9 1 8(1)

DEGREE(2,80%)

Fig. 2: Example Weighted Directed Graph

8

1 2 3

94

7 60

5 12

12 23 34 42

46

24

79

67

95

54

41

26

61

13

1

30

0

1 3

2 4 6 9

7 5 8

Iter0:

Iter1:

Iter2:

Iter3:

0

1 3

2 4 6 9

7 5 8

Iter0:

Iter1:

Iter2:

Iter3:

INTERLEAVE(1,2)

INTRALEAVE(1,2)

0

1 3

2 4 6 9

7 5 8

Iter0:

Iter1:

Iter2:

Iter3:

FRONTIER(3)

VID out
degree

children list
(in degree)

0 2 1(3), 3(2)

1 2 2(3), 4(3)

2 1 7(1)

3 3 4(3), 6(2), 9(1)

4 1 5(1)

5 1 4(3)

6 2 1(3), 2(3)

7 1 6(2)

8 3 1(3), 2(3), 3(2)

9 1 8(1)

DEGREE(2,80%)

(a) Frontier(3)

8

1 2 3

94

7 60

5 12

12 23 34 42

46

24

79

67

95

54

41

26

61

13

1

30

0

1 3

2 4 6 9

7 5 8

Iter0:

Iter1:

Iter2:

Iter3:

0

1 3

2 4 6 9

7 5 8

Iter0:

Iter1:

Iter2:

Iter3:

INTERLEAVE(1,2)

INTRALEAVE(1,2)

0

1 3

2 4 6 9

7 5 8

Iter0:

Iter1:

Iter2:

Iter3:

FRONTIER(3)

VID out
degree

children list
(in degree)

0 2 1(3), 3(2)

1 2 2(3), 4(3)

2 1 7(1)

3 3 4(3), 6(2), 9(1)

4 1 5(1)

5 1 4(3)

6 2 1(3), 2(3)

7 1 6(2)

8 3 1(3), 2(3), 3(2)

9 1 8(1)

DEGREE(2,80%)

(b) Interleave(1,2)

8

1 2 3

94

7 60

5 12

12 23 34 42

46

24

79

67

95

54

41

26

61

13

1

30

0

1 3

2 4 6 9

7 5 8

Iter0:

Iter1:

Iter2:

Iter3:

0

1 3

2 4 6 9

7 5 8

Iter0:

Iter1:

Iter2:

Iter3:

INTERLEAVE(1,2)

INTRALEAVE(1,2)

0

1 3

2 4 6 9

7 5 8

Iter0:

Iter1:

Iter2:

Iter3:

FRONTIER(3)

VID out
degree

children list
(in degree)

0 2 1(3), 3(2)

1 2 2(3), 4(3)

2 1 7(1)

3 3 4(3), 6(2), 9(1)

4 1 5(1)

5 1 4(3)

6 2 1(3), 2(3)

7 1 6(2)

8 3 1(3), 2(3), 3(2)

9 1 8(1)

DEGREE(2,80%)

(c) Intraleave(1,2)

Fig. 3: Placement decisions made by traversal-based strategies
on the example graph. Frontiers are listed as rows in the order
of traversal. Red-base-black-font indicates the vertex is in
HBM, and black-base-red-font means the vertex is in DRAM.

1) Degree: The Degree strategy uses two knobs to tune the
placement decision: a threshold for out-degree, and a cut-off
percentile for the list of children vertices in ascending order
of in-degree.

First, the vertices with outgoing edges greater than the
corresponding threshold are selected (vertices 3 and 8 in
Table I). Then, we pick one of the selected vertices, examine
it’s child vertices, and sort them in ascending order with
respect to the number of incoming edges. For all child vertices,
we look at its percentile of the incoming edges, and if it is less
than the cut-off percentile, we place it in HBM. This process
is then repeated for all vertices (parent) initially picked.

The intuition behind this placement strategy is that a vertex
with more number of outgoing edges would require more
bandwidth while visiting its children, hence the children are
chosen for placement. Additionally, if a child vertex has more
incoming edges, it is more likely to be accessed often and
would benefit from the lower latency of DRAM.

Table I shows the results of applying the Degree strategy on
the example graph of Figure 2, with the out-degree threshold
set to 2 and cut-off percentile set to 80.

TABLE I: Placement decision made by the Degree strategy.
Out degrees in bold font are those exceeding the threshold (set
to 2), and the bold vertices in adjacency list are those selected
to be placed in HBM.

vertex ID out degree adjacency list (in
degree)

0 2 1(3), 3(2)
1 2 2(3), 4(3)
2 1 7(1)
3 3 4(3), 6(2), 9(1)
4 1 5(1)
5 1 4(3)
6 2 1(3), 2(3)
7 1 6(2)
8 3 1(3), 2(3), 3(2)
9 1 8(1)

2) Frontier: This strategy analyzes the graph starting from
the root node specified to determine the frontiers (waves) in
a Breadth First Search (BFS) fashion. A frontier that has a
number vertices beyond a controllable threshold will be placed
in HBM. For example, the frontier of iteration 2 in Figure 3a
includes four vertices (2, 4, 6, 9) using a threshold of three,
hence it is placed into HBM. Conversely, if the number is
less than the threshold it will be placed in DRAM. With this
strategy, frontiers that would be accessed sequentially can be
placed in HBM together.

The intuition here is that this may provide benefit to graphs
which are highly connected and have very few frontiers.
Frontiers with a large number of vertices may benefit from the
high bandwidth, while those frontiers with a smaller number
of vertices will not need the extra bandwidth.

3) Interleave: The interleave strategy is similar to the
frontier strategy except that every frontier will alternate in
placement between HBM and DRAM. A knob is provided
for alternation ratio to control the number of frontiers per
memory type. For example, Figure 3b shows if a ratio of 1-2
is chosen for the example graph (Figure 2), then the vertex in
the first frontier goes to DRAM, the vertices in the following
two frontiers (iteration 1 and 2) are placed in HBM, and finally
the vertices in iteration 3 are placed in DRAM. If the ratio is
1-1, it means that every frontier will alternate in placement,
so iteration 0 and 2 would be in DRAM, and iteration 1 and
3 woud be in HBM.

The intuition in this strategy is that a graph with a large
number of vertices having small degree may benefit from
placement in HBM, as the frontiers are small but there are
many of them.

4) Intraleave: The intraleave strategy refines the interleave
strategy by making the partition granule finer-grained. Rather
than alternating per frontier, vertices alternate within the
frontier. The knob presented to tune this strategy is again a
ratio of DRAM to HBM, but the partition granule is vertices
rather than frontiers.

The motivation for this strategy was to see how it compared
to interleave and if a finer-grained partition provided any
meaningful insight or improvements.

Figure 3c shows the results of applying Intraleave strategy

3

on the example graph with a ratio 1 to 2.
5) Random: A random strategy is simply that, random.

A seed value is provided so that the distribution can be
reproduced as well as a bias to determine the probability of
being placed in HBM over DRAM. The use of a random
strategy was to show how our derived placement strategies
compared to randomly choosing vertices and if there was any
merit in our approach.

B. Ligra Modification
To determine the characteristics of a vertex, the graph

must first be pre-processed using its adjacency or weighted
adjacency list. We have modified Ligra such that an interme-
diate step is taken prior to constructing the graph in which
the adjacency list is analyzed to determine the number of
incoming and outgoing edges to each vertex. Upon obtaining
this information a placement policy is run, as described in
III-A, which relabels the vertices to form a new adjacency
list according to how they should be partitioned. In the new
adjacency list there are 2 logical groups numbered from (0:D-
1) and (D:N-1). D is the number of vertices going to DRAM,
leaving N-D as the number of vertices going to HBM. The
new adjacency list preserves the original topology of the graph
(relabeling the vertices numbers only). The value of D is
inserted at the top of the new adjacency list, which Ligra uses
to know when to stop allocating vertices in DRAM and switch
to allocation in HBM.

After relabeling, the new adjacency list is ready to be
consumed by the framework and create the graph. We modified
Ligra to use the memkind library so that hbw malloc()
can be called to allocate memory in HBM. The framework
allocates the first D vertices using malloc() and the remaining
N-D nodes with hbw malloc(). The graph is now ready to be
processed by an application.

C. Persistent Topology
Relabeling the vertices does not change the topology of

the graph in any way. To ensure that our remapping was
done correctly, we run the Single Source Shortest Path (SSSP)
application with both the original and relabeled adjacency lists,
observing that the results produced are the same.

IV. EVALUATION

In our evaluation we define the methodology used, rea-
soning for the selected graphs and applications, present the
results in terms of execution time, and discuss the notable
observations.

A. Methodology
To effectively evaluate our proposal, we run our modified

Ligra framework on a real KNL node measuring execution
time of 3 applications on 4 different graphs with varied topol-
ogy (graphs are listed with basic properties in Table II and are
characterized as Figure 4). The applications run are Breadth
First Search (BFS), Single Source Shortest Path (SSSP), and
Connected Components (CC). These applications were chosen

because they are common graph traversal applications and
native to the Ligra framework. The 4 graphs chosen were Road
TX (TX), Twitter MPI (TW), Orkut (OK), and a synthetic
graph known as Recursive MATrix (RMAT). These graphs
were chosen to contrast size and connectivity, and our selection
intended to represent how effective our optimization strategy
is across graphs with varied topology. In other words, did our
placement strategies benefit some applications/graphs while
hurting others.

TABLE II: Graphs Dataset [5]–[7]
Abbr. Name |V | |E|
TX Road network Texas 1,393,383 3,843,320
OK Orkut on-line social network 3,072,627 117,185,083
TW Twitter (MPI) 52,579,683 1,963,263,821
RMAT Synthesized RMAT graph 400,000,000 2,000,000,000

 Small Size (<= 16 GB) Large Size (> 16 GB)

Small Degree (<= 10) Road TX RMAT2B

Large Degree (> 10) Orkut Twitter

Fig. 4: Characterization of Graphs used

For parallelism support, we use OPENMP rather than CILK
since the number of threads as well as the affinity for them
can be defined, resulting in more stable results. We run each
test configured to use 68 threads with each tied to a physical
core on KNL. We chose 68 threads because we observed
that DRAM bandwidth became saturated at 64 threads using
performance counters, as shown in § IV-C.

We measure execution time and attempt to collect perfor-
mance counters for insights into the bandwidth achieved. We
compare the execution time of these applications in various
memory configurations (DRAM only, HBM only, HBM as a
cache, and using our placement strategy) and compare it to
the baselines of all in DRAM or all in HBM. Each experiment
was repeated 50 times to improve the reliability of results, and
execution time is presented as the geometric mean of the 50
runs.

B. Results

The overall performance of our tests were mixed with no
single placement strategy having a clear across the board
advantage over the others, as shown in Figures 5 and 7 (with
the legend mentioned in Figure 6).

The knobs chosen for placement strategies were either
random or purposefully chosen by looking at the distribution
of incoming and outgoing edges of the vertices, the number
of vertices visited in an iteration i.e. the frontier size, or the
number of physical cores on KNL (68).

To motivate discussion we identify notable observations
below and attempt to provide a rational behind them. Some
runs are omitted because they encountered segmentation faults
during execution (empty bars in the graph). The segmentation
faults are the result of having more vertices to place in HBM
than it can accommodate.

4

(a) Road TX BFS (b) Twitter BFS

(c) Road TX SSSP (d) Twitter SSSP

(e) Road TX CC (f) Twitter CC

Fig. 5: Execution time on Road TX and Twitter graphs for three applications (BFS, SSSP, CC)

Fig. 6: Legend for the figures

1) 2X Speedup with Degree SSSP: The most notable ob-
servation is the 2x speedup in Figure 5(c) for SSSP on Road
TX with all variants of the degree strategy performing well.
We think Road TX is ideally suited for the Degree strategy
because it prioritizes incoming edges of the children. Since
Road TX has many vertices with few edges, and the time
complexity of the SSSP algorithm (Bellman-Ford) is O(m.n),
prioritizing a vertex that has less incoming edges to it would
benefit most from being placed in HBM.

5

(a) Orkut BFS (b) RMAT2B BFS

(c) Orkut SSSP (d) RMAT2B SSSP

(e) Orkut CC (f) RMAT2B CC

Fig. 7: Execution time on Orkut and RMAT graphs for three applications (BFS, SSSP, CC)

2) BFS Outlier: Across the board the BFS application
performed the most consistently with any strategy and graph.
This was surprising as we thought this application would
be the easiest one to exploit with either our frontier or
intraleave strategy, and would show the most improvement
to the baseline.

Both the frontier and intraleave strategies perform close
to the baseline however, in each of the BFS runs there is a
clear outlier with the interleave strategy that is substantially
worse than the others (sometimes by 2x). On large graphs

such as Twitter that are highly connected with few frontiers
(<10), we believe it does so poorly because a frontier with
a large number of vertices is placed in DRAM rather than
HBM. The performance is then hindered by the bandwidth
that DRAM can provide. Conversely, the frontier strategy is
not as susceptible to this because the size of each frontier
is taken into account and no large frontiers are placed into
bandwidth limited memory.

3) Execution Time Differences: With BFS each vertex is
visited once while with other applications and corresponding

6

algorithms, each vertex is visited more than once and hence
have longer execution time. Moreover, it seems that the longer
the execution time, the more chance there is of boosting
performance.

4) Random: We observe that randomly placing data across
the heterogeneous memory system provides significant im-
provements when the size of the graph or the application is
large. As in Twitter and RMAT, a random strategy achieves
up to 2x and 1.3x speedup (wrt HBM only) respectively.
Furthermore, for Orkut SSSP it provides 1.2x speedup while
not being able to improve upon the other applications. We
believe this behavior is because SSSP takes weighted graphs
as an input, and hence consumes more memory, while BFS and
CC take unweighted graphs. There seems to be a correlation
between the size of the graph and how well the random
strategy does.

5) Advantageous to Partition: In every graph there is at
least one strategy that performs better than placing all vertices
in either HBM or DRAM. Our results show that graphs can
benefit from partitioning between the two types of memory
and that the optimal is not when all data is placed in fast
memory, as ProfDB assumes. Although we do not discover a
strategy that is all encompassing or the best, we do show that
it is possible to get better performance through at least some
method of partitioning a graph.

C. Performance Counter Pitfalls
To evaluate the delivered bandwidth during application

execution we attempted to query the performance counters
available using Linux’s perf tool. Our hope was that we would
be able to analyze the bandwidth delivered from each type of
memory and extract insights about how a placement strategy
impacted bandwidth utilization. To sanity check our use of
the perf tool and performance counters we first developed a
microbenchmark which ran parallel load streams to sequential
cache lines (64B). We used pthreads to parallelize the code
and the memkind library to allocate the array in HBM. We
expected that as we doubled the number of threads we would
see bandwidth delivered double until the maximum possible
bandwidth was reached from each type of memory.

We used the performance counters in Table III and sampled
them every 100ms using perf. Bandwidth delivered was then
calculated through the following equation:

GB/s =
(counter value ∗ 64B)

0.1s

TABLE III: Performance Counters

Counter Name Description

offcore response.demand data rd.mcdram number of MCDRAM
memory reads

offcore response.demand data rd.ddr number of DRAM
memory reads

The spec’ed maximum bandwidth of DRAM on KNL is
∼90GB/s and ∼400 GB/s for MCDRAM. As shown in Figure

8, as the number of threads is doubled bandwidth delivered
doubles. However, at 16 threads the bandwidth has surpassed
the theoretical maximum bandwidth DRAM can provide. We
made many attempts to identify the cause of this misrepresen-
tation of bandwidth but were unsuccessful in finding it. We
used a simple time-of-day (TOD) calculation to determine that
the bandwidth during the microbenchmark was not actually
exceeded (# of loads and time taken to complete was known).

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

1T 2T 4T 8T 16T 32T 64T

DRAM HBM

GB
/s

threads

HBMMax

DRAMMax

Fig. 8: Bandwidth derived via Performance Counters

Ultimately, due to our inability to identify the culprit of the
inflated bandwidth results using perf, we abandoned the use of
performance counters in our evaluation, relying on execution
time as our main source for performance evaluation.

V. CURRENT LIMITATIONS AND FUTURE PROSPECTS

The following describe limitations of our current implemen-
tation and evaluation that may affect other users. We also
discuss areas for improvement that can be pursued in the
future.

A. Threads
The results we attained were with 68 threads on KNL.

Other users would be impacted by their core configuration
and thread availability. Fewer number thread configurations
may not exceed the bandwidth available from HBM, and find
partitioning a moot point with heterogeneous memory.

B. HBM Capacity Constraints
A limitation in our modification to the framework was that a

maximum size of 16GB could be used for HBM (size available
on KNL). Other users may be impacted by this limitation
when they have more than 16GB available to use. Currently a
warning is given and a segmentation fault would occur if the
application were run. Future work should handle running out
of memory more gracefully.

C. Memory Hierarchy
The memory hierarchy can have a significant impact on

the overall performance of a system and the individual ap-
plications that run on it. Our optimization, in its current
form, does not take into consideration the memory model or

7

cache hierarchy of different microarchitectures, solely trying to
optimize partitioning at the lowest level of memory. Users may
be impacted by their specific memory hierarchy and future
work should involve investigation into how memory capacity
and hierarchy influence the performance of graphs, fueling
refinement to the placement heuristics we propose.

D. Robustness

As seen from the results in Section IV, none of our five
strategies gain considerable performance improvement in all
cases. In future work, we would like to try other placement
strategies based on different heuristics. Hopefully, a strategy
can be found to uniformly improve performance across the
board.

E. Runtime Information

Allowing duplicated vertices in DRAM and HBM could be
another direction of future work. This modification would not
require a big change to the framework and can be implemented
similar to the relabel tool. The intent is to mimic cache and
involve some runtime information to introduce dynamic be-
havior in the placement strategy while having zero-overhead,
which contrasts with cache.

F. Existing Work Comparison

Due to time constraints, our main focus was on mod-
ifying the Ligra framework, devising heuristics for graph
placement strategies, and evaluating their performance. As
such, we were not able to make 1-to-1 comparisons of how
our placement strategies compare to those such as DAP and
ProfDB. Future work could encompass direct comparisons to
partitioning strategies such as these to quantify the merit of
our optimization strategy.

VI. CONCLUSION

In this paper we propose a fine-grain static placement
optimization with a few heuristic-based strategies. We show
that the optimal data placement in a heterogeneous memory
system can not be assumed by placing all the data in fast
memory, and that statically partitioning a graph can pro-
vide performance improvements. We extend an existing light-
weight shared memory graph processing framework known as
Ligra, and provide programmers a few knobs to control the
placement of graphs without changing their code base. The
evaluation experiments with three different graph applications
on four representative graphs to show the effectiveness of our
proposed optimization strategies. Some strategies provided up
to 2x improvements (w.r.t. HBM only), however, there is no
golden strategy among the ones we evaluated that can achieve
the best performance in all cases.

In addition, we learned that in order to prevent inflated or
misleading results it is important to do a sanity check of your
observations. Failure to do so can cause both wasted effort
and negligent assertions to be made about the effectiveness of
a finding or proposal.

REFERENCES

[1] J. Gaur, M. Chaudhuri, P. Ramachandran, and S. Subramoney, “Near-
optimal access partitioning for memory hierarchies with multiple hetero-
geneous bandwidth sources,” in 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA), Feb 2017, pp. 13–24.

[2] S. Wen, L. Cherkasova, F. X. Lin, and X. Liu, “Profdp: A lightweight
profiler to guide data placement in heterogeneous memory systems,” in
Proceedings of the 2018 International Conference on Supercomputing,
ser. ICS ’18. New York, NY, USA: ACM, 2018, pp. 263–273. [Online].
Available: http://doi.acm.org/10.1145/3205289.3205320

[3] T. Ligocki, “Empirical roofline tool,” https://bitbucket.org/berkeleylab/cs-
roofline-toolkit, 2016.

[4] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph
processing framework for shared memory,” in Proceedings
of the 18th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, ser. PPoPP ’13. New York,
NY, USA: ACM, 2013, pp. 135–146. [Online]. Available:
http://doi.acm.org/10.1145/2442516.2442530

[5] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[6] J. Kunegis, “Konect: The koblenz network collection,” in Proceedings
of the 22Nd International Conference on World Wide Web, ser. WWW
’13 Companion. New York, NY, USA: ACM, 2013, pp. 1343–1350.
[Online]. Available: http://doi.acm.org/10.1145/2487788.2488173

[7] F. Khorasani, R. Gupta, and L. N. Bhuyan, “Scalable simd-efficient graph
processing on gpus,” in Proceedings of the 24th International Conference
on Parallel Architectures and Compilation Techniques, ser. PACT ’15,
2015, pp. 39–50.

8

