

Graph Placement Optimization on a Heterogeneous Memory System

Snehil Verma Alex Taft Qinzhe Wu

Course project EE382.22 Computer Architecture: User System Interplay

Motivation

Dynamic Access Partitioning (DAP) [HPCA 2017]

- Sacrifice memory side cache hit rate
- Online profiling

Lightweight Profiler (ProfDP) [ICS 2018]

- Profile data structures offline
 - Size, Importance, Bandwidth and Latency sensitivity
- Assumes optimal placement is when all data is in fast memory

Goals

Analyze the topology of graph and make choice if vertex stored in HBM or DRAM

• Relabel Tool

- Use existing shared memory framework (Ligra {PPoPP 13})
- No programmer code change
- No new hardware or online profiling

Users

- Graph Application on Heterogeneous Memory Systems
- Those that don't want to modify existing code
- Still be able to tune performance if desired

• Additional users:

• more complex placement strategies on top of what we propose

Placement Strategies

- Degree
 - Outgoing and incoming edges
- Frontier
 - Size of the frontiers in BFS
- Interleave
 - Alternate every BFS frontier
- Intraleave
 - Alternate vertices within a frontier
- Random
 - Skewed and unskewed

Evaluation

• Ligra Framework

- Measure execution time
- 4 Graphs of varying Size/Connectivity

• 3 Applications

- Breadth First Search (BFS)
- Single Source Shortest Path (SSSP)
- Connected Component (CC)
- All placement strategies tried with varied parameters
- Used Intel KNL at TACC
- Baselines were all in HBM, DRAM, or HBM as a Cache
- Each experiment repeated 50 times and reported the geometric mean

Abbr.		Name		V	E
TX OK TW	R Orkut	oad network Texas on-line social network Twitter (MPI)	1,3 3,0 52,5	393,383 072,627 579,683	3,843,320 117,185,083 1,963,263,821
DMAT	Sun	theeized RMAT graph	400.0	000,000	2,000,000,000
KMAI	Syn	ulesizeu KMAI grapii	400,0	,000,000	2,000,000,000
KMAI	Syn	Small Size (<= 16 GB)	Lan	ge Size (> 16 GB)
nall Degree (-	= 10)	Small Size (<= 16 GB Road TX)	Lar	ge Size (> 16 GB) RMAT2B

Some Interesting Observations

BFS on RoadTX using Degree

All in HBM All in DRAM CACHE mode RANDOM FRONTIER INTERLEAVE INTRALEAVE DEGREE

- 2x improvement over any other strategy
- but...

Degree (cont.)

• Not so great on some other graphs/applications

شمس بحث محتور محتور محتور محتور محتور محتور محتور تشو شو شو شو محتو محتو محتور محتور محتور محتور محتو محتو محتو

Random

- Randomly selecting provides improvement about as good as any intelligently chosen strategy
 - \circ For graphs with large size

Limitations and Future Work

- Memory Hierarchy not taken in consideration
- Capacity Constraints of HBM (16GB)

- Use as building block for more involved strategy
- Comparison with other works

Conclusions

- Performance improves via data partitioning
 - Achieves better speedup than placing data only in one type of the memory
- Provided a tool to relabel graph in heterogeneous memory system
 - Integrated into Ligra framework
 - No changes in code required
 - Knobs for the programmers
- No one strategy performs the best across all graphs/applications

Thank You

Backup

