MARCH 2019

METRICS FOR MACHINE LEARNING WORKLOAD BENCHMARKING

FastPath 2019, in conjunction with ISPASS 2019

SNEHIL VERMA, QINZHE WU, BAGUS HANINDHITO, GUNJAN JHA, EUGENE JOHN, RAMESH RADHAKRISHNAN, LIZY JOHN

The University of Texas at Austin, The University of Texas at San Antonio, Dell Inc.

Server industry trends

Machine learning/Deep learning emerging to provide better business insight

6x growth in Al

By 2020, 20% of the enterprise infrastructures deployed will be used for AI. Up from 3% in 2017.

40x growth in edge computing

40% of large enterprises will be integrating edge computing principles into their IT projects by 2021. Up from less than 1% in 2017.

TRAINING

Untrained neural network model

TRAINING

Learning a new capability from existing data.

INFERENCE

Trained Model New Capability

ţ

INFERENCE

Applying this capability to new data.

Trained Model Optimized for Performance

Importance of training hardware

- Flood of the data available
- Increasing computational power
- Competition (GPU, TPU, IPU, ASICs)

How to evaluate hardware for DL?

- Benchmarks?
- Metrics?

Benchmarks

BENCHMARKING

and many more...

PRIOR MEASUREMENT METHODOLOGIES

- Focused on one domain
- No standard ML suite maintained by a governing body

A broad ML benchmark suite for measuring performance of ML software frameworks, ML hardware accelerators, and ML cloud platforms.

- Coverage of different DL domains
- Reproducibility of results
- Accelerate innovation in DL hardware, systems, software & algorithms

MLPerf Training benchmark suite [v0.5]

Image Classification	TensorFlow	ResNet v1.5	Cisco, BNL
Object Detection*	Caffe2	Mask R-CNN with ResNet50	Stanford, Alibaba
Recommendation	PyTorch	Neural Collaborative Filtering	Stanford, Google
Reinforcement Learning	TensorFlow	Fork of the Mini Go project	N/A
Speech Recognition	PyTorch	DeepSpeech2	Baidu
Translation*	TensorFlow	Transformer	Cisco

* One more variation of the benchmark is available.

Metrics

Traditionally:

- Execution time
- IPC or IPC / Watt

With the advent of GPUs:

Metrics

Traditionally:

- Execution time
- IPC or IPC / Watt Issues?

With the advent of GPUs:

hroughput: #ima

Deep Learning needs a new metric!

Objective: Propose an appropriate metric for Deep Learning.

DAWNBench – Time to Accuracy (TTA)

Figure 6: Validation accuracy vs. training time for different ResNet architectures on CIFAR10. Horizontal lines indicate accuracy thresholds of 91.8%, 93%, 94%, and 94.4%. ResNet20, ResNet56, ResNet164 (with simple building blocks), and ResNet164 (with bottleneck building blocks) are fastest to the corresponding accuracy thresholds.

MLPerf quality target references

Time to Accuracy - Issues

Time to Accuracy - Issues

Sensitivity to threshold

Acc. (%)	TTA (M1)	TTA (M2)	Ratio (M2/M1)
70	246	364	1.479
71	278	364	1.309
72	294	424	1.442
73	422	424	1.004
74	486	504	1.037
75	502	664	1.323
76	694	704	1.014
77	998	804	0.805

Image Classification (CIFAR10)

Proposed Metric

• Average Time to Multiple Thresholds (ATTMT)

Ideally, a metric should be a function of both time and accuracy that rewards for:

- *hitting the target accuracy*
- reducing the time to achieve whatever accuracy have been achieved

Time to Multiple Threshold (TTMT) curves

ATTMT

		ATTAAT (843)	Ratio (M2/M1)		
ALL. (%)			TTA	ATTMT	
70	246	364	1.479	1.480	
71	262	364	1.309	1.389	
72	272.6	384	1.442	1.409	
73	310	394	1.004	1.271	
74	345.2	416	1.037	1.205	
75	371.3	457.3	1.323	1.232	
76	417.4	492.6	1.014	1.180	
77	490	531.5	0.805	1.085	

Methodology

Benchmarks – MLPerf Training v0.5

Image Classification

Object Detection

Recommendation

Reinforcement Learning

Translation

ResNet v1.5

Mask R-CNN with ResNet50

Neural Collaborative Filtering

Fork of the Mini Go project

Transformer

Platforms

Parameters	Platform 1 – <u>P100</u>	Platform 2 – <u>GV100</u>	
CPU	Intel Xeon E5-2660v4	Intel Xeon W-2195	
Architecture Base Freq.	Broadwell 2.00 GHz	Skylake 2.30 GHz	
#CPU #Cores #Threads	2 28 56	1 18 36	
Physical Memory	4-Channel 256 GB DDR4	4-Channel 256 GB DDR4	
GPU (architecture)	NVIDIA Tesla P100 (Pascal)	NVIDIA Quadro GV100 (Volta)	
CUDA cores Tensor cores	3584 -	5120 <mark>640</mark>	
Mem. Size BW	16 GB HBM2 720 GBps	32 GB HBM2 ECC 870 GBps	

Evaluation

TTA - TTMT

L'AUDIAROUT UDIT L'OQULOUR

TTA - TTMT

Reinforcement Learning

Sensitivity

Quality Target	TTA (hrs)		ATTMT (hrs)		%improvement wrt	
(%)	GV100	P100	GV100	P100	TTA	ATTMT
35	64.61	58.95	60.88	52.72	-9.60%	-15.48%
36	64.61	62.89	63.04	55.47	-2.73%	-13.65%
37	69.18	62.89	65.37	57.50	-10.00%	-13.69%
38	69.18	72.51	66.13	61.14	4.59%	-8.16%
39	69.18	74.65	66.90	65.14	7.33%	-2.70%
40	69.18	74.65	67.66	67.75	7.33%	0.13%

Sensitivity of metrics to the quality target for Reinforcement Learning Benchmark

Variability of metric

Quality Target (HR@10) Quality target range, δ

Seed Value	TTA (0.635)	ATTMT (0.585, 0.635, +0.01)
1	59.70	26.34
2	66.35	28.44
3	64.68	30.80
4	77.74	31.64
5	95.57	36.25
Sample Variance	205.45	13.94
Standard Deviation	14.33	3.73

Variability in Recommendation Benchmark for different metrics (in minutes)

Single vs Multiple Threshold(s)

Benchmark	Speedup if TTA is used	Speedup if ATTMT is used
Image Classification (Full-Precision)	1.46	1.41
Image Classification (Mixed-Precision)	2.65	2.75
Object Detection	1.60	1.68
Recommendation	0.68	0.61
Reinforcement Learning	1.08	1.00
Translation	0.98	1.22

Speedup of GV100 over P100

Conclusion

• TTA

- Sensitive to threshold and seed values (requires more number of runs)
- Only one data point is used from a long run, resulting in wastage of many data points
- Encourages risk taking

Conclusion

- ATTMT
 - Lower sensitivity to the chosen threshold and variability to the seed values
 - Tracks overall behavior of the system using multiple points from the same run
 - Slightly complex to calculate

Thank You!

Questions?

To know more about our work please visit:

Laboratory for Computer Architecture

http://lca.ece.utexas.edu/

