
Improving Data Locality
by Kernel Fusion in DNNs

May 17, 2019

Snehil Verma, Bagus Hanindhito, Joseph Dean



Background
● Recently, there has been a growth in using CNN’s for neural machine translation

● Training is very time consuming

● Many CNN’s have numerous layers - each executed separately with separate 

kernel launches



Objective
● Explore the benefits of fusing layers

● Many layers are element-wise operations and can be fused to improve locality

● Target Application - Fairseq

https://github.com/pytorch/fairseq/blob/master/fairseq.gif



Software Setup

Model

● Gehring et al. (2017): Convolutional Sequence 

to Sequence Learning

Framework ● PyTorch

Language and Tools

● CUDA, C++

● cuBLAS, CUTLASS, cuDNN

Dataset ● WMT14 English-French



Encoder Stage

Convolution GLU Residual



Decoder Stage

Convolution GLU ResidualAttention



PyTorch Autograd analysis
Profiled 3000 updates of the second epoch.

Findings

GLU operation takes around 6% time of the 

convolution operation (including both forward 

and backward path).

Implications:

● Major performance improvement cannot be 

attained in fusing the two layers.

● However, fusing these layers is the first step 

towards improving data locality.

Forward

Backward

33.4

248.9

Time (s)

conv_tbc*

12.7

GLU

3.9

* Convolution TBC (Time, Batch, Channel)



Hardware Setup

Dell PowerEdge T640 System Architecture4 NVIDIA Tesla V100 GPUs



3 different approaches to improve Data Locality

CUTLASSCUDA

cuDNN



CUDA implementation
Bare-metal CUDA implementation 

❏ More control over the data.

❏ The code’s performance would not be comparable to the library performance.

Note that, the goal of the project is to perform kernel fusion and understand it’s 

benefits, not to optimize the convolution function.



CUDA implementation (cont’d)
Convolution normally can be done by sliding the kernel into the input contiguously. 

❏ Each computation for each kernel position is highly parallelizable.

❏ Operating on contiguous data of the input increase locality.



CUDA implementation (cont’d)
The GLU divides the data into two parts of equal size and operates on one element 

from each parts at a time. 

❏ Access pattern needs to be considered to fuse the GLU and Convolution together.



CUDA implementation (cont’d)
To enable GLU fusing, we need to 

modify the convolution operations 

so that it can produce two results 

required for GLU.

❏ Losing some locality for 

convolution because of 

non-contiguous operation on 

input data.

❏ Guarantee that the convolution 

results are still stored in register.

❏ Minimize the data that needs to 

be stored back into memory.



Results - Memory usage



Results - Performance in seconds



Results - Global Memory loads



Results - Global Memory stores



What did we learn?
1. Closely understood the working of CNNs specifically concerning Translation 

(encoders, decoders, and attention layer).

2. A decent understanding of the working of PyTorch and its interface with the C++ 

and CUDA libraries.

3. Working with open source template library - CUTLASS

4. Working with cuDNN.

5. Data locality optimizations in CUDA by kernel fusion.

6. Extending PyTorch with custom C++ and CUDA functions.

7. One main thing we learnt is that we should have planned the timeline 

appropriately. We tried to cover a wide breadth but we weren’t able to finish 

everything in time which lead to poor evaluation.



Acknowledgements

We would like to thank

● Qinzhe Wu

● Sangkug Lym

● Dr. Ramesh Radhakrishnan

● TAs: Yongkee Kwon and 

Kyushick Lee

● Prof. Mattan Erez

for their continuous advice and for 

making the hardware available.



Thank You!
Some of the code can be found @ https://github.com/UT-LCA/FusedConvGLU

Questions?


