
Perceptron Learning Driven
Coherence Aware Reuse Prediction

for Last-level Caches

Snehil Verma

Advisor: Dr. Biswabandan Panda

Perceptron Learning Driven
Coherence Aware Reuse Prediction

for Last-level Caches

L1

L2

LLC – Last Level Cache

DRAM

Processor

Cache Hierarchy with DRAM

L1

L2

LLC – Last Level Cache

DRAM

Processor

 Latency increases
 Size increases

Cache Hierarchy with DRAM

Replacement in Last Level Cache (LLC)

Goal: To minimize off-chip DRAM accesses !!

Replacement in Last Level Cache (LLC)

Goal: To minimize off-chip DRAM accesses !!

Preserve important blocks

Replacement in Last Level Cache (LLC)

Goal: To minimize off-chip DRAM accesses !!

Preserve important blocks
Important blocks More reused blocks
 (enjoy more hits)

Example: Inclusive Cache

L1 / L2

LLC

C
fill

fill

memory

Core request

Victim

evict

B
ack In

valid
ate

Requested data not in cache

Example: Inclusive Cache

L1 / L2

LLC

Core request

C

Z Y

W X Y Z

Z

LRU

Memory A W X Y Z $

Example: Inclusive Cache

L1 / L2

LLC

Core request

C

Z Y

W X Y Z

Z

LRU

Memory A W X Y Z $

Hit

Example: Inclusive Cache

L1 / L2

LLC

Core request

C

Z Y

W X Y Z

Z

LRU

Memory A W X Y Z $

Hit
5 more requests for Z
(Highly reused block)

Example: Inclusive Cache

L1 / L2

LLC

Core request

C

Z Y

W X Y Z

Z

LRU

Memory A W X Y Z $

Hit
5 more requests for Z
(Highly reused block)

But no update of LRU status at LLC!

Example: Inclusive Cache

L1 / L2

LLC

Core request

C

Z Y

W X Y Z

A

LRU

Memory A W X Y Z $

Miss

Example: Inclusive Cache

L1 / L2

LLC

Core request

C

Z Y

W X Y Z

A

LRU

Memory A W X Y Z $

Miss

Example: Inclusive Cache

L1 / L2

LLC

Core request

C

Z Y

W X Y Z

A

LRU

Memory A W X Y Z $

Evict Z Get A

Example: Inclusive Cache

L1 / L2

LLC

Core request

C

Z Y

A W X Y

A

LRU

Memory A W X Y Z $

Back invalidate Z

Example: Inclusive Cache

L1 / L2

LLC

Core request

C

Y

A W X Y

A

LRU

Memory A W X Y Z $

Get A

Example: Inclusive Cache

L1 / L2

LLC

Core request

C

A Y

A W X Y

A

LRU

Memory A W X Y Z $

Highly reused block (Z)
evicted from cache

So, what can be done?

Perceptron Learning Driven
Coherence Aware Reuse

Prediction for Last-level Caches

Which blocks have high
reuse ?

Parallel Processing

Parallel Processing

Multi-threaded Applications

Parallel Processing

Multi-threaded Applications

Sharing data b/w multiple Cores

Parallel Processing

Multi-threaded Applications

Sharing data b/w multiple Cores

Shared LLC Private L1/L2

Shared Blocks in LLC

3.8 times
more hits

Banerjee, Subarno (supervisor Chaudhuri, Mainak). ”Mining Signatures of Inter-core Sharing Behavior in the Last-Level Caches of Multi-core Processors.” M.Tech thesis, IIT Kanpur. 2015, June

Problem? - Sharing in the Existing LLC
Management Policies

SOTA policies:

• Only 60 % of
cache fills
are shared

• They do not
approximate
the optimal
sharing
behavior
well enough

Banerjee, Subarno (supervisor Chaudhuri, Mainak). ”Mining Signatures of Inter-core Sharing Behavior in the Last-Level Caches of Multi-core Processors.” M.Tech thesis, IIT Kanpur. 2015, June

SRRIP [ISCA 2010]
SHiP [MICRO 2011]

Can we do better ?

How do we predict
reused blocks ?

Perceptron Learning Driven
Coherence Aware Reuse Prediction

for Last-level Caches

Perceptron Learning

• Prediction of true or false

• Correctness? Update weights

Perceptron Learning Driven
Coherence Aware Reuse

Prediction for Last-level Caches

With parallelism comes
some problems !

Cache Coherence

• Uniformity of shared resource data present in multiple
local caches

• Coherency Features: Sharers ID, Number of sharers, etc.

Core X Cache

Core Y Cache

DRAM
Coherency

Main idea

Perceptron based reuse prediction to learn the

correlation among the coherence features and

reuse to guide the LLC replacement policy

Five alternatives

• Bias: The number of sharers of the requested line is used as bias

• NumSharers and NumSharersHash: Query the number of sharers

• OneHot and OneHotHash: One hot encoding of the sharers of a cache block.

Workloads and Replacement Policies

• PARSEC benchmark suite 8 multi-threaded applications and kernels.

• Combination of two with 4 threads each, using large input data set

• Performance comparison with:

 SDBP

Perceptron Reuse Prediction

 LRU (Sharers Aware)

 LRU (no sharers aware)

5 Alternatives State of the Art

PARSEC [PACT 2008]
SDBP [MICRO 2010]
Perceptron [MICRO 2016]

Results (4MB LLC) (MPKI)

0
2
4
6
8

10
12
14
16
18

M
P

K
I

MPKI

lru_sh perceptron sampling numsharers lrunosh bias onehot numsharershash onehothash

 streamcluster ↔ other benchmarks, except dedup, bias MPKI dropped to at least 25% wrt LRU
 On average, bias MPKI dropped to 40%, w.r.t LRU
 Other variations of perceptron lower MPKI w.r.t LRU.

Results (4MB) (Speedup)

 streamcluster ↔ other benchmarks, except dedup, bias speedup of at least 40% wrt LRU.
 Bias geometric mean speedup of 20% over LRU.
 Other variations of perceptron marginal improvement over LRU.

0

0.5

1

1.5

2

2.5

Sp
e

ed
u

p

Speedup wrt LRU (sharers aware)

perceptron sampling numsharers lrunosh bias onehot numsharershash onehothash

Conclusion

• We derive five perceptron alternatives and for 4MB & 8MB LLC

they all show improvement, on average.

• Specially, perceptron implemented with bias outperforms every

other replacement policy and shows a major improvement.

Acknowledgement

• This work is the continuation of that initiated at Texas A&M University.

• It was performed along with Jiayi Huang and Pritam Majumder, supervised by
Dr. EJ Kim.

Thank You!

