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Abstract—Inclusive caches have been widely used in Chip
Multiprocessors in favor of the simplicity of cache coherence
protocol. However, it trades the coherence simplicity for effective
cache capacity unlike the non-inclusive caches. Cache blocks
that get evicted from the last-level cache (LLC) need to be
invalidated in higher levels of cache in order to maintain the
inclusion property. It is possible that highly referenced blocks
in the higher levels of cache (L1 and L2) can get selected as
victims in the LLC, which may incur more coherence traffic
and limit system performance. Thus, it is important to predict
highly reused blocks in the whole cache hierarchy and incorpo-
rate the prediction with cache management policies for better
performance. We propose Coherence-Aware Reuse Prediction
(CARP) to use cache coherence information of an application
as a feature in perceptron learning based reuse prediction. We
use the same for better cache management at the LLC. We
observe that CARP provides marginal performance improvement
for most of the parallel applications from PARSEC benchmark
suite. Additionally, we show the effectiveness of CARP by running
multiple parallel applications concurrently.

I. INTRODUCTION

Modern Chip Multiprocessor (CMP) designs mostly have
inclusive cache hierarchy [14] since it simplifies the coherence
protocol. To enforce the inclusion property, the data cached in
higher level caches should be a subset of lower level caches.
Since the inclusive last level caches (LLCs) are often unaware
of the temporal locality of the higher level caches, blocks with
high temporal locality in higher level may be consequently
evicted from the cache hierarchy if the LLC decides to replace
it. This may limit the performance for inclusive caches due
to smaller effective capacity, compared to non-inclusive and
exclusive caches. To enjoy the benefits of inclusive cache
without sacrificing performance, it is essential to keep the
important blocks in the cache hierarchy.

One metric to evaluate a block’s importance is its reuse,
that tells the frequency of the block re-references. A smart
cache management policy should keep the blocks with high
reuse and replace those with lesser or no reuse. The presence
of no-reuse blocks in the cache is one of the major factors
that affects cache utilization. A cache block is considered no-
reuse if it is not re-referenced until its eviction. The impact
of no-reuse blocks on the cache performance is two-folded.
It occupies the space in the cache unnecessarily and thereby
other useful blocks (for near future accesses) may get evicted.
Hence, the replacement policies must be aware of the no-reuse
blocks in the cache in order to select the victims during a
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cache line eviction. Reuse predictors are researched to detect
useful blocks that tend to be accessed again before it is
evicted [2], [5]. However, these techniques only evaluate multi-
programmed workloads and neglects the sharing for multi-
threaded workloads.

Multi-threaded shared memory applications executing on
CMPs require communication between the threads mapped on
different cores through the shared LLC. In addition, highly
re-referenced blocks in higher cache levels tend to have low
reuse in LLCs. In such cases, most replacement policies ignore
the workload preference of shared data over private data. They
are also unaware of the reuse of the blocks in the higher level
caches and tend to replace those blocks. Significant research
has been done to predict block reuse in caches for multi-
programmed single-threaded workloads. In shared caches, the
criticality of cache blocks varies among the sharers and sharing
degrees (number of sharers), especially for multi-threaded
workloads.

The coherence information such as coherence states history,
sharers and sharing degree, indicates how the block is utilized
within the cache hierarchy, which can be used to guide for bet-
ter reuse prediction. The extent of predicting inter-core reuse
of shared data can be improved by introducing coherence-
awareness to optimize replacement or insertion policies. The
reuse of cache blocks can be learned using machine learning
techniques [5]. In this work, we propose to include one hot
encoding of block sharers and number of sharers as features to
explore the design space for reuse prediction using perceptron
learning.

II. BACKGROUND AND MOTIVATION

Cache replacement has been an active field of research in
computer architecture. Though the LRU replacement policy
has been a de-facto policy for a long time, it is not robust for
recency-unfriendly cache access patterns, such as the thrashing
access patterns and streaming access patterns. It is important to
detect the cache blocks with high reuse to avoid unnecessary
evictions and misses. Research towards this involves efforts
to accurately predict block reuse and adjusting cache line
replacement and insertion by learning re-reference behavior
of the program. Qureshi et al. [6] improves the LRU Insertion
Policy to insert the most recently used block in the LRU
position in eviction chain, rather than the MRU position. This
is enhanced in the Bimodal Insertion Policy (BIP) that adapts
to changes in the working set and their Dynamic Insertion
Policy (DIP) chooses between BIP and the traditional LRU



policy depending on which policy incurs fewer misses. The
Static Re-Reference Interval Prediction (SRRIP) [1] scheme
predicts the re-reference distance of new cache entries and
places them at a near-immediate position, rather than a distant
one (as in the case of LIP). DRRIP is the DIP-equivalent
for this policy. Petoumenos et al.s instruction-based reused
distance predictor [3] uses the temporal characteristics of a
cache block to predict its reuse distance at run-time, based on
the access patterns of the instructions (PCs). The Signature-
Based Hit Predictor (SHiP) [4] uses memory region, program
counter, and instruction sequence history based signatures to
predict the re-reference behavior of a cache block. Sampling
Dead Block Prediction [2] samples a small number of sets out
of the entire cache using partial tags for reuse prediction. It
uses the address of the last memory access instruction for the
prediction. In Xie et al.s [7] work, a new cache management
approach has been proposed that combines dynamic insertion
and promotion policies to provide the benefits of cache par-
titioning, adaptive insertion, and capacity stealing all with a
single mechanism.

Researches in the recent years are adopting machine learn-
ing for cache management to further reduce the miss rate and
enhance performance. Teran et al. [5] has applied perceptron
learning using tags and PCs to learn the correlations between
past cache access pattern and future accesses, which drives
replacement and bypass optimization.

Most of the above work are evaluated using single-threaded
workloads, while cache management from the perspective of
multi-threaded applications is rarely explored. And for shared
memory, the coherence information captures the utilization of
the cache block and also the program behavior. However, it is
not exploited to improve LLC efficiency.

In this research, we propose coherence-aware reuse predic-
tion with perceptron learning for multi-threaded applications.

III. RELATED WORK

This section visits the state of the art in cache management
from three perspectives, namely, reuse prediction and replace-
ment policies for LLCs, inclusive cache management and
sharing awareness in multi-core systems for multi-threaded
applications.

1) Reuse Prediction: Khan et al. [2] introduces sampling
dead block prediction. This technique predicts whether a cache
block is dead based on the program counter and drives dead
block replacement and bypass optimization. It maintains a
sample set of the cache and three prediction tables, which are
updated by accesses and evictions to the sampler set. Teran
et al.s adopts [5] on perceptron learning for reuse prediction
shows a higher accuracy over the SDBP prediction technique
It uses perceptron learning to utilize features such as data and
instruction addresses to find correlations between past cache
access behavior and future accesses, which in turn help to
determine replacement and bypass optimization.

2) Inclusive Cache Management: Cache management are
researched to bridge the gap between inclusive caches and

non-inclusive/exclusive caches [11], [12]. Tian et al. [11] in-
troduced Temporal-Based Multilevel Correlating management
(TMC) to detect temporal-aware LL.C replacement candidates.
Jallel et al. [1] proposed Temporal Locality Aware (TLA)
cache management policies to allow an inclusive LLC to be
aware of the temporal locality of lines in the core caches and
avoid evicting these blocks from the LLC.

3) Sharing Awareness Cache Management: Panda and Bal-
achandran [16] introduced the idea for bringing coherence
and sharing awareness in replacement policies for parallel ap-
plications. Later, Natarajan and Chaudhuri [13] characterized
the contribution of LLC hits for shared and private blocks in
multi-threaded applications, which shows that shared blocks
are more important than private blocks. They also analyze how
sharing-awareness can reduce LLC miss by over LRU policy.
This is of great interest to us for understanding the potential
benefits of avoiding LLC evictions of temporal blocks at
higher cache level due to sharing-unawareness.

Further, Banerjee’s thesis [17] presents a more comprehen-
sive study of sharing behavior in the LLC and provides a
descriptive approach of making replacement policies sharing-
aware with the help of various signatures.

In this project, we propose to use coherence information as
learning features and rely on machine learning techniques to
learn the correlation among the features and reuse, and use it
to guide LLC replacement policy.

IV. COHERENCE-AWARE REUSE PREDICTION

The main idea is to use coherence information of the
cache blocks as extended learning features to guide reuse
prediction. In shared-memory systems, coherence information
such as coherence states, sharers and number of sharers tells
how the cache block is utilized in the running multi-threaded
application. The Perceptron reuse prediction [5] works well
for multi-programmed workloads by learning the cache access
pattern and program phase using combination of tags and PCs.
Using Perceptron reuse prediction as basis, we extend the
feature set to include number of sharers and onehot encoding
of sharers to explore coherence awareness for reuse prediction.
We derive five alternatives using these extra features. Unlike
the Perceptron, the coherence-aware schemes interact with
LLC more tightly since they need to query the coherence
information from LLC. For misses in LLC, there is no valid
coherence information for the access. Fortunately, we can
precisely speculate such information since it will be the first
access to the new block. So, the number of sharers and sharers
encoding will be 1 and (I < requester id). Figure 1 shows
the organization and data-path of the predictor with enhanced
part highlighted.

1) Bias: In Bias, we use the number of sharers of the
requested line and use it as bias for the perceptron prediction.
Simply, the new prediction becomes Yout = Yperceptron —bias.
The intuition behind this is that cache blocks with higher
sharing degree tend to have high reuse in the cache hierarchy.

2) NumSharers and NumSharersHash: In these alterna-
tives, we query the number of sharers and use it as another
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Fig. 1. Coherence-Aware Reuse Predictor Organization and Datapth [5].

feature to index its weight table. The difference between
NumSharers and NumSharersHash is the latter XORs the
number of sharers with the PC as other features. So the
NumShares only needs a table with number of entries same
as the core numbers.

3) OneHot and OneHotHash: OneHot represents the one
hot encoding of the sharers of a cache block. We use this
as an extended feature for Perceptron learning. Similar to
NumSharersHash, OneHotHash XORs the encoding value
with PC and compute the index for the corresponding table.

V. METHODOLOGY
A. Simulation Configuration

We use an execution-driven simulator ZSim [10] to model
detail micro-architectural behaviors. ZSim supports multi-
threaded applications and models the cache hierarchy in detail.
The L2 is configured as inclusive due to the limits of ZSim
that it only support non-inclusion for LLC. We configured the
system with 8 OOO cores with parameters shown in Table I.

TABLE I
SYSTEM CONFIGURATION

Cores  Westmere-like OOO at 2.4 GHz, 8 cores (MT)
L1 caches 32 KB, 4-way set-assoc, split D/I, 3 cycles
L2 caches Private, 256 KB, 8-way set-assoc, inclusive, 7 cycles
L3 cache Shared, 4, 8, 16 MB, inclusive, 8-way set-assoc, 27 cycles
Coherence  MESI, 64B lines
Memory DDR3-1333 MHz, 4 ranks/channel, 4 channels

B. Workloads

We use 8 multi-threaded applications and kernels from
the PARSEC [8] benchmark suite for evaluation. We exclude

ferret, raytrace and vips due to compilation issues and facesim
due to long simulation time. All benchmarks are using pthread
implementations and run in a combination of two with 4
threads each, using large input data set. We annotate the
benchmarks and fast-forward to the parallel phases for detailed
simulation. All the runs are executed to the end.

C. Replacement Policies

We implement SDBP [2] and Perceptron [5]. Based on Per-
ceptron, we extend the feature set with coherence information
(e.g. number of sharers and one hot encoding of sharers) and
derive five alternatives: Bias, NumSharers, NumSharersHash,
OneHot and OneHotHash. These predictors are trained with a
sampling set and predicts reuse for every cache access. The
threshold values we used are same as those in [5].

The baseline replacement policy is LRU (Sharers Aware),
which first selects the blocks with least number of sharers
and then it applies LRU policy. With reuse prediction, the
replacement policy prioritizes the blocks without reuse for
victim selection, then LRU is applied. We also evaluate
normal LRU (no sharers aware) replacement policy. Bypass
optimization is not implemented due to time limit as it needs
to go through the coherence actions in inclusive caches. We
leave it for future work.

VI. RESULTS

In this section, we report the simulation results for different
policies. We analyzed the results to show performance speedup
and cache misses for various techniques.

TABLE I
ABBREVIATIONS USED FOR BENCHMARKS

blackscholes | bl
bodytrack | bo
canneal | ca
dedup | de

fluidanimate | fl

freqmine | fr

streamcluster | st
x264 | x2

1) Cache misses (MPKI): Fig. 2 reports the misses per kilo
instructions (MPKI) for various techniques over LRU policy
with 4 MB LLC configuration. With the increase in the LLC
size the overall MPKI reduces for all the techniques except for
perceptron with bias as a feature, for which the MPKI remains
more or less a constant.

For a 16 MB LLC, LRU (no sharers aware), LRU and SDBP
replacement policies outperform other replacement policies, in
general. Almost all the benchmark combinations show changes
when moved from 16 MB LLC to 8 MB LLC. On average,
perceptron with bias as a feature, shows much less MPKI,
dropped to 52%, w.r.t LRU. Other variations of perceptron
show lower MPKI w.r.t LRU as well. Interestingly, for a
combination of streamcluster with x264, freqmine, fluidani-
mate, canneal, bodytrack and blackscholes (i.e. every other
benchmark except dedup), with perceptron bias replacement
policy MPKI dropped to at least 30% w.rt LRU. For a
combination of x264 & canneal, MPKI respective to every
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replacement policy, except numsharers, dropped to around
30%, w.r.t LRU.

Using a 4 MB LLC, we observe similar results as observed
with an 8 MB LLC. On an average, perceptron with bias
as a feature, shows much less MPKI, dropped to 40%, w.r.t
LRU. Other variations of perceptron show lower MPKI w.r.t
LRU as well. For a combination of streamcluster with x264,
freqmine, fluidanimate, canneal, bodytrack and blackscholes
(i.e. every other benchmark except dedup), with perceptron
bias replacement policy MPKI dropped to at least 25% w.r.t
LRU. For a combination of x264 & blackscholes and x264 &
canneal, MPKI respective to every replacement policy dropped
to around 33% and 25% respectively, w.r.t LRU.

2) System performance (Normalized IPC): We use normal-
ized IPC as performance metric since we start the detailed
simulation from the beginning of parallel phases and run the
application till the end. Fig. 3 shows the speedups of various
replacement policies normalized to LRU, with a 4 MB LLC
configuration.

For a 16 MB LLC, it is observed that LRU (no shares
aware), LRU and SDBP replacement policies outperform
other replacement policies, in general. For a combination of
streamcluster & x264, numsharershash achieves speedup of
around 6% over LRU.

For an 8 MB LLC, perceptron with bias as a feature achieves
geometric mean speedup of 15% over LRU. Other variations
of perceptron show marginal improvement over LRU as well.
Similar to MPKI, for a combination of streamcluster with
X264, freqmine, fluidanimate, canneal, bodytrack and blacksc-
holes (i.e. every other benchmark except dedup), bias achieves
a speedup of at least 38% over LRU. For a combination of
x264 & canneal, every replacement policy, except numsharers,
achieve a speedup of at least 120%, over LRU.

Similarly for a 4 MB LLC, perceptron with bias as a feature
achieves geometric mean speedup of 20% over LRU. Other
variations of perceptron show marginal improvement over
LRU as well. For a combination of streamcluster with x264,
freqmine, fluidanimate, canneal, bodytrack and blackscholes
(i.e. every other benchmark except dedup), bias achieves a
speedup of at least 40% over LRU. For a combination of x264
& blackscholes and x264 & canneal, every replacement policy
achieve a speedup of 60% and 120% respectively, over LRU.

VII. CONCLUSION AND FUTURE WORK

This project explores the design space of perceptron-based
reuse prediction using cache coherence information, specif-
ically, number of sharers and one hot encoding of sharers.
We derive five alternatives and for 4 MB & 8 MB LLC they
all show improvement, on an average. Especially, perceptron
implemented with bias as a feature outperforms every other
replacement policy and shows a major improvement.

In near future, we plan to analyze and explain the results.
For this we need to obtain the maximum achievable perfor-
mance and observe the number of blocks evicted for every
number of sharers.

Further, we plan to explore the design space by exploiting
various coherence information and their combination such
as coherence states transitions and history, and identify the
effective features and their applications. In addition, we will
implement bypass optimization in ZSim to support in inclusive
cache hierarchy.
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