
Perceptron Learning for 

Coherence-Aware Reuse 

Prediction

Advisor: Dr. Eun Jung (EJ) Kim

Presented by: Snehil Verma

(Running Multiple Benchmarks at a time)



Overview

• Motivation

• Introduction

• Related Works

• Coherence-Aware Reuse Prediction (main idea)

• Methodology

• Results

• Conclusion



Motivation

Though the LRU replacement policy has been a de-facto policy for a long time, it is not

robust for recency-unfriendly cache access patterns.

It is important to detect the cache blocks with high reuse to avoid 

unnecessary evictions and misses.



Introduction

• Inclusive cache hierarchy simplifies the coherence protocol.

• Inclusion property - The data cached in higher level caches should be a

subset of lower level caches.

• Since the inclusive last level caches (LLCs) are often unaware of the

temporal locality of the higher level caches, blocks with high temporal

locality in higher level may be consequently evicted from the cache

hierarchy.

• This may limit the performance for inclusive caches.

• Hence, it is essential to keep the important blocks (most reused) in the

cache hierarchy.



Related Works

• Reuse Prediction: Sampling Dead Block Prediction (SDBP) & Perceptron.

• Inclusive Cache Management: Temporal-Based Multilevel Correlating

(TMC) & Temporal Locality Aware (TLA).

• Sharing Awareness Cache Management



Coherence-Aware Reuse Prediction

• Sharing Awareness Cache Management

• Using Perceptron reuse prediction to learn the correlation among the

features and reuse, and use it to guide replacement policy.



Five alternatives

• Bias: In Bias, we use the number of sharers of the requested line and use it

as bias for the perceptron prediction.

• NumSharers and NumSharersHash: In these alternatives, we query the

number of sharers and use it as another feature to index its weight table.

• OneHot and OneHotHash: OneHot represents the one hot encoding of the

sharers of a cache block.



Simulation Configuration

• Execution-driven simulator Zsim.

• L2 is configured as inclusive due to the limits of ZSim



Workloads and Replacement Policies

• 8 multi-threaded applications and kernels from the PARSEC benchmark suite.

• Excluded ferret, raytrace and vips due to compilation issues and facesim due to long

simulation time.

• Run in a combination of two with 4 threads each, using large input data set.

• SDBP and Perceptron implemented using the same parameters from the paper.

• Variations in Perceptron: Bias, NumSharers, NumSharersHash, OneHot and

OneHotHash.

• The baseline replacement policy is LRU (Sharers Aware).

• LRU (no sharers aware) replacement policy is also evaluated.



Results (4MB LLC) (MPKI)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Benchmarks' Combination

M
P

K
I

MPKI

lru

perceptron

sampling

numsharers

lrunosh

bias

onehot

numsharershash

onehothash



Results (4MB LLC) (MPKI)

0

2

4

6

8

10

12

14

16

18

Benchmarks' Combination

M
P

K
I

MPKI

lru

perceptron

sampling

numsharers

lrunosh

bias

onehot

numsharershash

onehothash



Results (4MB LLC) (MPKI)

0

1

2

3

4

5

6

7

8

9

Benchmarks' Combination

M
P

K
I

MPKI

lru

perceptron

sampling

numsharers

lrunosh

bias

onehot

numsharershash

onehothash



Results (4MB) (Speedup)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Benchmarks' Combination

S
p

ee
d

u
p

Speedup

lru

perceptron

sampling

numsharers

lrunosh

bias

onehot

numsharershash

onehothash



Results (4MB) (Speedup)

0

0.5

1

1.5

2

2.5

3

Benchmarks' Combination

S
p

ee
d

u
p

Speedup

lru

perceptron

sampling

numsharers

lrunosh

bias

onehot

numsharershash

onehothash



Results (4MB) (Speedup)

0

0.5

1

1.5

2

2.5

Benchmarks' Combination

S
p

ee
d

u
p

Speedup

lru

perceptron

sampling

numsharers

lrunosh

bias

onehot

numsharershash

onehothash



Results (4MB) (Observations)

• On an average, perceptron with bias as a feature, shows much less MPKI, dropped

to 40%, w.r.t LRU.

• Even other variations of perceptron shows lower MPKI w.r.t LRU.

• For a combination of streamcluster with every other benchmark except dedup, with

perceptron bias replacement policy, MPKI dropped to at least 25% w.r.t LRU.

• For a combination of x264 & blackscholes and x264 & canneal, MPKI respective to

every replacement policy dropped to around 33% and 25% respectively, w.r.t LRU.

• Perceptron with bias as a feature, achieves geometric mean speedup of 20% over

LRU.

• Even other variations of perceptron shows marginal improvement over LRU.

• Similar to MPKI, for a combination of streamcluster every other benchmark except

dedup, bias achieves a speedup of at least 40% over LRU.

• For a combination of x264 & blackscholes and x264 & canneal, every replacement

policy achieves a speedup of 60% and 120% respectively, over LRU.



Conclusion and Future Plans

• We derive five perceptron alternatives and for 4MB & 8MB LLC they all

show improvement, on an average.

• Specially, perceptron implemented with bias as a feature outperforms every

other replacement policy and shows a major improvement.

• In near future, we plan to analyze and explain the results regarding which

we need to observe the number of blocks evicted for every number of

sharers.



Thank You


